Основы радиоэлектроники

Системы передачи информации

Требования к производительности мультисервисного узла доступа

Само по себе решение об организации LSР-туннеля согласно предложенному здесь алгоритму сводится к анализу двух (с туннелем и без туннеля) значений среднего совокупного времени пребывания пакета в узлах от 1 до узла N.

Алгоритм туннелирования в сети MPLS.

Основное отличие технологии MPLS - IP-маршрутизаторы анализируют заголовок каждого пакета, чтобы выбрать направление для его пересылки к следующему маршрутизатору, в технологии MPLS заголовок анализируется только один раз на входе в сеть, после чего устанавливается соответствие между пакетом и потоком.

Принцип коммутации MPLS основывается на обмене меток. Любой передаваемый пакет ассоциируется с тем или иным классом сетевого уровня FEC (Forwarding Equivalence Class), каждый из которых идентифицируется определенной меткой. Значение метки уникально лишь для участка пути между соседними узлами сети MPLS, которые называются также маршрутизаторами, коммутирующими по меткам LSR (Label Switching Router). На рисунке 1 пограничный маршрутизатор LSR1 - входной, а LSR4 - выходной маршрутизатор. Последовательность маршрутизаторов (LSR1,., LSR4), через которые проходят пакеты, принадлежащие одному FEC, образует виртуальный тракт LSP, коммутируемый по меткам, LSP (Label Switching Path). Таким образом, главная особенность MPLS - отделение процесса коммутации пакета от анализа IР - адресов в его заголовке, что открывает ряд возможностей.

image031

Рисунок 7 - Организация туннеля

Существует еще одно весьма важное достоинство MPLS - возможность в рамках архитектуры MPLS вместе с пакетом передавать не одну метку, а стек меток.

Операции добавления/изъятия метки определены как операции на стеке (push/pop). Результат коммутации задает лишь верхняя метка стека, нижние же передаются прозрачно до операции изъятия верхней. Такой подход позволяет создавать иерархию потоков в сети MPLS и организовывать туннельные передачи. Речь идет о возможности управления в MPLS всем трактом передачи пакета без специфицирования в явном виде промежуточных маршрутизаторов. Это достигается путем создания туннелей через промежуточные маршрутизаторы, которые могут охватывать несколько сетевых сегментов, как это изображено на рисунке 7. Все пограничные маршрутизаторы MPLS (LER1, LER2, LER3 и LER4) используют протокол BGP и создают коммутируемый по меткам тракт LSP между ними (LSP1). LER1 знает о том, что его следующий пункт назначения - LER2, поскольку он передает данные от отправителя, которые должны пройти через два сегмента сети. В свою очередь, LER3 знает о том, что его следующий пункт назначения - LER4, и т.д. Эти пограничные четыре LER будут использовать протокол LDP для получения и хранения меток от выходного LER (LER4 в данном сценарии) вплоть до входного LER (LER1).

image032

Рисунок 8 - Транзитные маршруты

Однако для того, чтобы данные были переданы от LER1 к LER2, они должны пройти через несколько (в данном случае три) транзитных маршрутизаторов LSR. Таким образом, между двумя LER (LER1 и LER2) создается отдельный тракт LSP (LSP2) (рис.8), который охватывает LSR1, LSR2 и LSR3. Он, в сущности, представляет собой туннель между этими двумя LER. Метки в этом тракте отличаются от меток, которые LER создали для LSPl.

image033

Рисунок 9 - Организация транзитного маршрута

Это справедливо и для LER3 и LER4, равно как и для LSR, находящихся между ними. Для этого последнего сегмента создается тракт LSP3. Для достижения этого результата, при передаче пакета через два сетевых сегмента используется концепция стека меток. Поскольку пакет должен следовать через LSP1, LSP2 и LSP3, он будет переносить одновременно две отдельные метки. Пары, используемые для каждого сегмента, следующие: для первого сегмента - метка для LSP1 и LSP2, для второго сегмента - метка для LSP1 и LSP3.

Когда пакет покидает первую сеть и принимается пограничным маршрутизатором LER2, тот удаляет метку для LSP2 и заменяет её на метку для LSP3, заменяя при этом метку LSP1 внутри пакета на метку следующей пересылки. LER4 удаляет обе метки перед отправкой пакета адресату.

Математическая модель эффекта туннелирования в MPLS представляет собой сеть массового обслуживания с последовательными очередями.

Оцениваемыми параметрами являются: среднее время обслуживания без прерывания (период занятости) и среднее время пребывания пакета в n-м узле. Обслуживаемые за период занятости (т.е. непрерывно, без освобождения) пакеты объединяются в группу на выходе узла и называются пачкой. Средняя длина такой пачки выражается числом пакетов. На вход граничного узла 1 поступает пуассоновский поток сообщений с интенсивностью входного потока заявок image034 и средним временем обслуживания image028в системе М/М/m в стационарных условиях (при image035 является также пуассоновским с той же интенсивностью image034). Но при последовательно соединенных очередях мы не можем рассматривать каждый узел независимо от других. Перейти на страницу: 1 2 3 4 5 6 7


Другое по теме:

Каналы связи и интерфейсы Тема контрольной работы по дисциплине "Информационные измерительные системы" "Каналы связи и интерфейсы". Появление ИИС обусловлено в первую очередь конкретными задачами производства и научных исследований, требующих получе ...